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ABSTRACT  

Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this 
context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different 
light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in 
vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after 
irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells 
culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid 
scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular 
mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary 
cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A 
metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which 
could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated 
fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular 
proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular 
component, such as cytochromes, being the target of the treatment.  

Keywords: Wound Healing, Blue LED light, human keloid fibroblast. 
 

1. INTRODUCTION  
Keloid scars are described as a fibrous tissue overgrowth in the site of skin lesion. They are formed only in predisposed 
individuals and, unlike normal scars, do not regress and often reappear after surgery. Keloids are benign dermal fibro 
proliferative tumors with no malignant potential, but can be quite annoying for the afflicted subjects in terms of pruritus, 
pain and restriction of movements in the most serious cases [1], without taking into account the psychological traumas. 
Keloids occur almost always on the chest, shoulders, upper back, back of the neck and earlobes, rarely on mucous 
membranes [2]. They are unique in humans, principally in dark-skinned people [3], with a high show up in specific 
ethnic populations and individuals with familiar heritability [4]. The keloids tissue is characterized by a high level of 
collagen in the site of the lesion that produce a scar extending beyond the boundaries of the original wound. [6]. The 
collagen fibers are larger, thicker and wavier than those in normal skin and they show a random orientation. The 
exaggerated synthesis of collagen is probably due to the increase of fibroblasts density and their proliferation rate which 
induces a rising in production of collagen and components of extracellular matrix (ECM) respect to the normal skin 
[7,8].  
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Currently, no specific growth factors or proteins have been identified as the cause for keloid origin and development. In 
scientific bibliography it has been reported some regulators of the fibrotic cascade, such as transforming growth factor β 
(TGF-β) and fibronectin extra domain A (Fn-EDA) that are demonstrated to play a role in collagen deposition during 
keloid growth, however, the undergo mechanisms and how they are involved are still unclear [9].  

Recently, a keratinocytes role has been suggested [10] in relation to the hypoxia, which is a typical condition of keloid 
scars and other solid tumors. Hypoxia inducible factor1α (HIF1α) is the main factor induced by hypoxia and it is also 
involved in proliferative activity. HIF1α has been correlated with tumor invasion and metastasis process through 
vimentin and fibronectin expression upregulation and E-cadherin and ZO-1 junction expression downregulation in keloid 
keratinocytes under hypoxic conditions. Hypoxia promotes the endothelial-to-mesenchymal transition (EMT) process 
and enhance the invasion ability of keloid keratinocytes, allowing the keloids to extend beyond the wound boundaries 
[11-13]. 

The use of incoherent light like the one emitted by LEDs (light-emitting diodes) in order to care hyperproliferative skin 
diseases such as psoriasis, acne, keratosis and skin cancer is widely studied [14] and today it is clear that the irradiation 
with specific wavelengths has a biological effect. Even if the cellular mechanisms involved in these processes are still 
unclear or not fully investigated yet, the photobiomodulation is an undisputed biological phenomenon. 

To induce a biological activity, the light must be absorbed by specific molecules, also called photoacceptors, leading 
them to an excited state. These activated-molecules then affect secondary targets inside the cell, transducing the light 
signal into a molecular response [15, 16]. In the visible-to-near-infrared spectral range, one of such acceptor is 
cytochrome c oxidase [17, 18]. In the blue range of wavelength, porphyrin-containing enzymes and flavoproteins are 
thought to be photoacceptors linking the mitochondrial respiratory chain to photostimulation [19-21].  

From our previous studies in rodent models we demonstrated that 30 seconds of blue light at 420 nm treatment induce an 
early increase of inflammatory infiltrate improving wound healing in superficial abrasions [22-31]. In this work we use 
an in vitro model in order to investigate if human derma keloids fibroblasts are influenced by blue light LED treatment at 
420 nm, for the purpose to consider an innovative application in cosmetic surgery. 

2. MATERIALS AND METHODS 
2.1 Primary cells cultures 

Human keloid fibroblasts cells (HKFCs) cultures has been set up from human keloids tissues coming from aesthetic 
surgeries performed at the AOU Città della Salute e della Scienza di Torino. The keloid tissue has been used within 5 
hours from the excision and during this time it has been maintained in Dulbecco Modified Eagle Medium (DMEM) at a 
temperature of 4°C. After several washes in Phosphate Buffer Saline (PBS) (Pan-React Applichem, Milan, Italy), the 
cultures of HKFCs has been prepared with a surgical punch in order to obtain sections of approximately 2 mm in 
diameter. The sections have been collected in a scratch-Petri dish and maintained in DMEM low glucose medium (Pan-
React Applichem, Milan, Italy) supplemented with 10% Foetal Bovine Serum, 1% of Glutamine and 1% Penicillin-
Streptomycin (EuroClone, Milan, Italy), keeping it at 37°C and 5% CO2. In the two weeks following the preparation, the 
fibroblasts migrated from the tissue. The experiments have been performed between the second and fifth cell division; 
during this time, the cultures were maintained under standard culture conditions and the medium has been refreshed 
every 48 hours. Every keloids tissue has been divided in superficial derma and deep derma, in order to obtain a specific 
fibroblasts cell culture. When it was possible, also fibroblasts from the wound periphery have been harvested. 

2.2 The Blue light 

The blue light-based device uses a commercial LED, emitting 1 W power at 420 nm (see figure 1). The LED is coupled 
with a 1.2 m long flexible polymeric fiber and mounted on a benchtop device equipped with a touchscreen where it is 
possible to control all the irradiation parameters. The illuminated area corresponds to a 5 mm radius circle with a 
resulting power density of about 1.2 W/cm2, homogeneously distributed on the spot area like as from a top-hat source. 

2.3 Viability Assay 

The viability assay has been performed using WST-8, a metabolic and colorimetric test from Sigma-Aldrich (St. Louis, 
MO, USA). 5x103 HKFCs have been seeded in a multiwell plate (Corning, Sigma Aldrich, Milan, Italy) and triple of 
wells have been irradiated with the blue light respectively for 5, 10, 20, 30, 45 and 60 seconds. The power density of 
radiation has been set at 235 mW, while the irradiation was performed keeping the fiber tip 1 cm far from the bottom of 
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the well. Every treatment has been performed in Serum Free Medium without red phenol in order to avoid light 
absorption from cell medium. All the tests were recorded with a IR thermal camera (Nec Avio R300SR, Nippon-
Avionics, Tokyo, Japan) in order to measure an eventual variation of temperature. Tests analysis has been performed 24 
hours afterwards irradiation and absorbance has been read with an automatic microplate absorbance reader (LT-4000 
Labtech, Heathfield, East Sussex, England) processing the values with a specific commercial software.  

 

 
Figure 1. The blue-light LED device. 

2.4 Electrophysiology 

Electrophysiological recordings were performed on freshly isolated HKFCs. Membrane potentials and ion currents were 
measured with standard whole cell current - clamp and voltage - clamp techniques. Each coverslip was transferred to a 
recording chamber (1 mL volume), mounted on the platform of an inverted microscope (Olympus CKX41, Milan, Italy) 
and superfused at a flow rate of 2 mL·min-1with a standard extracellular solution containing (in mM): HEPES 10, D-
glucose 10, NaCl 147, KCl 4, MgCl2 1 and CaCl2 2 (pH adjusted to 7.4 with NaOH). Borosilicate glass electrodes 
(Harvard Apparatus, Holliston, MA, USA) were pulled with a Sutter Instruments puller (model P-87) to a final tip 
resistance of 4–6 MΩ. Pipette solution used contained the following (in mM): K-gluconate 134, KCl 10, EGTA 11 and 
HEPES 10 (pH adjusted to 7.4 with KOH). Data were acquired with an Axopatch 200B amplifier (Axon Instruments, 
CA, USA), stored and analyzed with a pClamp 9.2 software (Axon Instruments,CA, USA). Cell membrane capacitance 
was calculated in each cell throughout the experiment by integrating the capacitive currents elicited by a -10mV voltage 
pulse. Peak currents activated by blue light were normalized to cell membrane capacitance and expressed as mean of the 
current density (pA/pF) in averaged results. 

2.5 Protocols  

Unless otherwise stated, cells were voltage-clamped at -70 mV. Capacitive transients generated by the electrode and by 
cell membrane were digitally subtracted by the amplified circuit. Series resistance (Rs), membrane resistance (Rm) and 
membrane capacitance (Cm) were routinely measured by fast hyperpolarizing voltage pulses (from 70 to 75 mV, 40 ms 
duration). Only cells showing a stable Cm and Rs before, during, and after light treatment were included in the analysis. 
Immediately after breakthrough into whole-cell configuration, cell resting membrane potential (Vrest) was determined 
by switching to the current-clamp mode. A voltage ramp protocol (800 ms depolarization from -120 to +80 mV) has 
been used to evoke a wide range of overall voltage-dependent membrane currents before, during and after treatments. 

3. RESULTS 
3.1 Viability Assay 

Two samples of human keloids have been examined (figure 2). From WST-8 tests, we discovered that fibroblasts derived 
from different sections of the keloid tissue show a different behavior with irradiation times. In particular cells 
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metabolism increases at short irradiation time (5 seconds), while for long irradiation times it decreases with increasing 
treatment time. The reduction of metabolic activity is related to fibroblasts death. 

The analysis of superficial and deep fibroblasts populations also suggests that different sections of keloid tissue respond 
in different ways to blue light treatment. In particular fibroblasts from superficial derma seem to be more sensitive than 
ones from deep derma, but these results must be clarified with further assays and experiments.   

Moreover, fibroblasts derived from perilesional tissue react in a different way respect to fibroblasts of deep and 
superficial derma. In fact, the viability of these kind of cells does not increase after 5 seconds of irradiation but, rather, it 
immediately decreases. On the other hand, for long irradiation time, the behavior of fibroblasts from wound boundary is 
the same of other fibroblasts subpopulations.  

 
Figure 2. The results obtained from WST-8 tests. Metabolism of fibroblasts from wound boundary decreases immediately 
after blue light irradiation at 420 nm, while superficial and deep fibroblast metabolism increases. For longer irradiation 
times, all fibroblasts shows a homogeneous behavior.  

3.2 Electrophysiology 

Whole-cell patch clamp recordings were performed on 10 cells showing a Cm=13.3 ± 2.8 pF; Rm=772 ± 260 MΩ; Vm = 
-45 ± 7.4 mV (mean ± SEM). Preliminary voltage-clamp results on HKFCs show that 30 seconds of blue light 
application increases the amplitude of outward currents evoked by a voltage ramp protocol. Not all cells react in the 
same way after the blue light treatment, probably depending on the different metabolic state of fibroblasts. In order to 
facilitate result interpretation, we plan to integrate patch clamp recordings with investigations into fibroblasts cell-cycle, 
i.e. by performing electrophysiological experiments in 24 h starved cells in order to synchronize cell cycle in G0. 
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