

EWMA 2018, Krakov 9-11 May

Blue LED light irradiation induces wound healing improvements through modulation of the inflammatory infiltrate

<u>F Rossi¹</u>, R Cicchi², G. Magni¹, F. Tatini¹, S. Bacci³, G. Paroli³, G. De Siena¹, F. S. Pavone^{3, 4}, R. Pini¹

¹Institute of Applied Physics «Nello Carrara», National Research Council (IFAC-CNR)

²National Institute of Optics, National Research Council (INO-CNR)

³University of Florence

⁴European Laboratory for Non-linear Spectroscopy (LENS), Florence

This research has been partially supported by EmoLED srl

Introduction

A problem to be solved:

To design a non-invasive, low cost, easy-to-use device for:

- inducing photohaemostasis of superficial bleeding
- promoting <u>wound healing</u> in difficult wounds
- Take advantage of endogenous absorbers in blood such as oxy- (deoxy-) haemoglobin
- Maximize haemoglobin absorption against absorption of other absorbers (i.e melanin)
- Transform light energy into a thermal effect or photochemical effect

In vivo tests

Analysis of the healing phase in mice models

Materials & Methods

- 2 superficial abrasions on the back (\emptyset 1cm)
- Random treatment on one of the wound
- Follow up @0, 1, 3, 6, 12, 18, 24, 72 h
- Macroscopic observation during follow up
- Histology, immunohistochemistry and confocal microscopies of biopsies

Results long term follow up 4d p.o. 5d p.o. Tests were performed in ated albino and black Not-treated mice, diabetic, coagulopatic and TRPV1 knock-out mice

M1/ Other

M2

40 12

71 16

7 36

40 9 11

42 11 8

42 20 8

48

39 38 10

37

36 47 12

7

Treated Not treated

Higher **immunity reaction** in **1 - 6 hours**, a lower degree of inflammation after 24 hours

In vivo tests

Promoting wound healing in difficult wounds (selected patients)

Difficult wounds: Pressure ulcer

After #1 treatment After #2 treatment After #3 treatment After #4 treatment

Difficult wounds: Trauma ulcer

T0

After #1 treatment After #2 treatment After #3 treatment After #4 treatment

After #5 treatment

Conclusions

• Effects of blue LED wounds irradiation:

1. Acceleration of the early healing phase

2. Improvement of the healing process in superficial abrasions and in difficult wounds